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The derivation of mode-coupling equations for 
equilibrium and non-equilibrium dynamics of a glass 
within the Keldysh formalism 

V N Prigodint 
Ph ysik-Department der Technischen Univmitit Munchen, D-8046 Garching, Miinchen, 
Federal Republic of Germany 

Received 21 June 1991 

Abstract.The mode-couplingequationsfor arandomdass(stmctural0r spin-glasssystems) 
are derived by using the Keldysh technique. For this derivation the assumption about the 
initial equilibrium state of the system is crucial. The glass transition corresponds to the 
appearance ofa time-symmetry-breaking solution. Therefore the orderparameteroccumng 
below the critical temperature has a purely dynamic origin. The final dynamic equations are 
reduced to a model introduced by Gdtze and SjBgren in 1984. The other characteristic 
feature of the glassy state is the oonservation of a slightly non-equilibrium distribution. In 
this quasi-equilibrium case the dynamics is described by Parisi-Sompolinsky-Zippelius 
equations. 

1. Introduction 

It is now a well established fact that in the infinite-range king spin glass (the model of 
Sherrington and Kirkpatrick (1975)) below T, there coexist infinitely many phases 
(valleys) separated from each other by barriers of infinite height (see e.g. Binder and 
Young1986). Thesestatescan becharacterized byanoverlapdistributionfunctionP(q), 
which is directly related to the spin-glass order parameter q ( x )  by the relation dx/dq = 
P(q)  (Parisi 1983). In terms of the mutual overlaps these states demonstrate ultrametric 
organization (Mszard et al1984). This picture does not refer to a particular mechanism 
providing the thermal equilibrium. 

Starting from Sompolinsky and Zippelius (1982) (hereafter sz), and followed by 
Hertz (1983), Houghton et a1 (1983), De Dominicis and Young (1983) and Ginzburg 
(1986), a number of attempts have been made to reproduce the statistical mechanics 
result of Parisi (1980) within a dynamic framework. Traditionally, one assumes that in 
alargesystembut WithahitenumberofspinsNthereare inter-valleytransitions, which 
can be described by introducing a spectrum of long relaxation times. In the limit N +  10, 

all times diverge and the spectrum becomes continuous. A solution obtained in this 
way in addition to the Parisi parameter q(x) contains the new order parameter A(x) 
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representing the anomalous response. The appearance of the new independent par- 
ameter A(x)  reflects the degeneracy of the glassy state. But an important point in the 
derivation ofthe equationsfor A(x) and q ( x )  isthe violation ofthe fluctuation-dissipation 
theorem. This is especially surprising for the finite system. 

Another difficulty of the sz solution is that the dynamics includes the long-time 
relaxation, which is slow because of the large N .  But so far it is not clear how to calculate 
this small parameter governing the slow relaxation. The sz approach does not, in 
principle, allow one to do this. Thus the question about the true dynamics of spin glass 
requires further study. 

In the present work we study this problem by using the Keldysh formalism (Keldysh 
1965,Langreth 1976).Thisapproachhasanumberofadvantages.First,theconventional 
diagrammatic representation is applicable in this technique. Secondly, this approach 
allows the consideration of non-equilibrium phenomena, which are an aspect of the 
glassy phase. Thirdly, the problem of averaging over random parameters is absent in 
this approach (Ginzburg 1989). This averaging problem is important for random glass 
transition. 

Specifically, we consider the A p 4  model with random couplings. The radius of 
interactionandthe volumeofthesystemareassumedto beinfinite.Thismodeldescribes 
the structural-glass and spin-glass transitions in the so-called soft model of spin glass. In 
equilibrium we find that for the non-ergodicity parameter the standard mode-coupling 
equations (Gotze 1991) appear, representing a purely dynamic state. Similar equations 
have been discussed in earlier theoretical works (Hertz 1983, Gotze and Sjogren 1984). 
In terms of the purely thermodynamic phases, thisorder parameter is the long-time limit 
of the autocorrelation function averaged over the valleys. The corresponding dynamics 
describes the intra-valley transitions. We emphasize that this result has been obtained 
for zero external field. 

In the slightly non-equilibrium case (the term ‘slightly’ will be specified below) sz’s 
solution occurs, but our interpretation is different from that of sz and is completely 
based on the existence of similar non-equilibrium states below the glass transition. The 
relevance of sz’s solution to a non-equilibrium situation has been previously suggested 
by a number of authors (Hertz 1983, De Dominicis and Young 1983). 

In the following section we define the model and also derive the dynamic equations 
by using the Keldysh technique. In section 3 we discuss the equilibrium case and present 
the mode-coupling equations. Section 4 is devoted to the non-equilibrium dynamics. In 
the conclusion we discuss the results. 

2. Model of structural glass transition and the Keldysh equations 

Consider the system of N coupled anharmonic oscillators described by the following 
Hamiltonian: 

H = 22 d X , , P , )  + J , X , X i  (1) 
i i.i 

p(x,p) = (1/2b)xZ + ( A / S ) X 4  + (b/2)o;p2 

where xi is a displacement of the jth atom in dimensionless units. In (l), J ,  are the elastic 
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constants coupling the atoms. They are assumed to be randomly distributed around zero 
so that 

(Jii) = 0 (J; )  = p 2 / N  (3) 
where N is the number of atoms. 

For a displacive structural transition model one usually assumes 
The first two terms in (2) present the potential confining of an atom near its centre. 

b > O  k > 0. 

At high temperatures the equilibrium position of an atom is equal to zero. For strong 
enoughinteratomiccoupling and weak elasticconstant l /b,  thereisacriticaltemperature 
below which the sites undergo displacements. Because of the random couplings the new 
positions are also random. Hence we have the glass state. The last term in (2) provides 
the dynamics of the system. 

A similar Hamiltonian is used in the soft model of spin glass. The dynamics in this 
case is govemed by the Langevin equation 

= - y  6H/6Xj + Ei(t) (4) 

(5) 

where Ej(t) are stochastic forces with the following correlator: 

(Ei(t1)EjiOZ)) = 2YT6,6(r, - td.  
In the Keldysh formalism the behaviour of the system is described by the following 

Green matrix function (Keldysh 1965, Langreth 1976): 

Gm,e(ti, rz) = &[F(ti, rz )  - @ G ~ ( t i ,  t z )  + W ~ ( t i ,  t2)l 

Gdti ,  t z )  = -i(sdoo[nj(tl),x,(r*)l}), WI - t d  

(7) 

(8) 

where a, = 21, GR is the retarded Green function 

and CA is the advanced Green function. Above, the brackets (. . .), indicate averaging 
over the random couplings. In (S), po is the matrix of density given in an earlier moment 
of time thant,,*. It isnot necessarily anequilibriumdensity matrix. The timedependence 
of the operator x,(t) is determined by the total Hamiltonian. The Green functions GR,* 
yield information about the spectrum of the system. They do not explicitly depend on 
the choice of po. The correlation function 

F(~I ,  $2) i(Sp@oxj(t,)n,(tz)}), (9) 

additionally describes the time evolution of the distribution function. 
To evaluate G perturbation theory can be used. As a free Hamiltonian we choose 

the harmonic part of (2). The anharmonicity in (2) and random couplings between atoms 
in (1) are considered as perturbations. Then in a zeroth approximation we have a system 
of uncoupledharmonic osciIlators. In thew representation the bare Green functions are 

G;(w) = bwa/[(w + - w i ]  (10) 

Fo(w) = 2 i a 0 ( w )  (11) 
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a,i 

6, I Figwe 1. (a)The exact diagrammaticrcprcscniation 
of the mass operator. (b) The structure of lhe bare 

P .i Xi’ 
b) interaction veriex. 

e 
a) 

C P O ( W )  = [ N ( W o )  + f]nbUJo[6(W - W O )  + 6 ( W  + W O ) ]  (12) 

N(o) = [exp(w/T) -1I-I (13) 

Fo(o) = coth(w/Zr)[G$(w) - G ~ ( w ) ] .  (14) 

where N ( o o )  is the occupation number. At equilibrium N ( w )  is 

and the following relation holds: 

With the matrix description (6), the perturbation series can be presented by standard 
diagrams (Keldysh 1965). The general diagrammatic expression for the mass operator 
is shown in figure l (a ) ,  where a thick line represents the whole Green function, and a 
circle is the total interaction vertex. The structure of the bare interaction vertex (see 
figure 1(b)) reads 

=DM - ri,kf - (in/s)a, (ol)w6yb6ysjk + W/N) (oz )&z)yA (15) 
where the Greek characters refer to the Keldysh indices and the Roman ones are the 
oscillator coordinates. In a general case, the whole interaction vertex can be found from 
the Bethdalpeter  equation. For large N, but not too small p ,  we are able to show that 
the renormalization of the vertex reduces to a factor (see appendix). Therefore we use 
the bare vertex to calculate the mass operator. Using the following structure of the mass 
operator: 

= f(a;6Q - - 6ZA) (16) 

we find 

For the general case in the time representation the Dyson equations for the Keldysh 
Green functions read 
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Applying to both sides of these equations the following operator: 

~ ; ~ ( t ~ )  = (l/bw;)[-aZ/at: - &] (21) 

and using the foUowing properties of the bare Green functions: 

Gi'(ti)GW(ti, t z )  = 6(fi - fd 
Gi'(fi)Fo(ti, t z )  = 0 

we obtain from (19) and (20) 

Gi'(ri)F(ti I fz) = &3 [Q@i i3)G~(t3r fd + Z R ( ~ ,  f3)F(f3, fd1 (22) 

The above with (17) and (18) is the set of equations used for further analysis. To them 
should be added the initial conditions. Instead of this we shall impose the relation 
between the Green functions. 

Similar equations are valid for the spin glass where the bare retarded Green function 
is (Sompolinsky and Zippelius 1982) 

[ ~ ; ( t ) ] - ~  = [-(i/y) a lar  + r]. (24) 

In this case the dynamics is purely dissipative. For the structural transition model, 
tbe bare Green function contains no dissipation. The dissipation is generated by the 
interaction term. This term provides the stability of the system in the glass state. 

3. Equilibrium relaxation (modecoupling theory) 

Let us consider the equilibrium case. Then the Green functions depend on the time 
differences only, and the following relation between them should be valid: 

F(W)  = COth(0/2T)[G~(0) - G,(W)]. (U) 

In the time representation this relation reads 

d r  +a 

F(t i z). 1. sinh(nTz) GR(t) - GA(t) = -iT 

For simplicity further considerations are restricted to the classical case, when tem- 
peratures are high in comparison with the characteristic frequencies. This consideration 
can be justified, at least, near the critical point. However, all considerations can be 
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extended to a quantum system on the basis of relation (26). In the classical case we can 
rewrite equation (26) as 

F(t) = 2i@(t) 

Similarly, for the mass operators the following relation should hold: 

Q(t) = 2im(t) 

( a / a M 4  = T I W )  - XR(OI. 
(28) 

For the model under consideration this is true since in the classical case we have from 
(17) and (18) 

m(r) = p%(r) + EA2@3(t) 

&(f 3 0) = -(3A/2)6(t)@(t) - (l/T)(a/at)m(i). 
(29) 

(30) 
In the mode-coupling theory one assumes that m(t) can be rewritten as a polynomial in 
Q(f)  (G6tze 1991) 

m(t) = Eaa,on(t) .  (31) 

&(t > 0) = GR(f) (6/6@(t))m(t) .  

n 

In accordance with (B), &(t) should have the form 

(32) 

Such a structure of &(I) and of m(f)  allows one to obtain the final equations for the 
general case. 

Using the relations (27), (28) and (22) we can write down the closed equation for the 
comelati& function: 

Q(z) 
am@- z) 

ar T[G;'(t) + (3A/2)@(f = O)]@(r )  = ,f d r  
0 

Integrating the last term in (33), we finally obtain 

T[G,(t)]-'@(t) + 
[Go( t ) ] - '  = GC1(t) + (3A/2)@(t = 0) - (l/T)m(t = 0). 

dz m(t - z) -- a@(z) - - @(-m)m(+m) (34) 

(35) 

ar 

Similarly from (23) we can also obtain the equation for the response function: 

A solution of this equation should be self-consistent with relation (27). 
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Now we can make the Laplace transformation. Multiplying the equations (34), (36) 
and (27) by exp(izr) and integrating over f from -0 to + m we have 

-izGi'(z)@(z) = {Gi'(z) - [G& =O)]-'}@(f= 0) - @(-m)m(+m) /T  

TG&) = @(f = 0) + iz@(r) 

[GR(z)]-* = [Go(z)]-' - izm(z)/T 

[G;o(z)]-' = (l/h$j)(~* - ma) + (3d/2)@(t= 0) - (l/r)m(t = 0) 

(37) 

(38) 

(39) 

(40) 
where 

w 

@(m) = I dteu'@(f) G&) = [ dte"G,(t) 
0 

These equations describe both the high- and the low-temperature phases. In the case of 
the soft model of spin glass, for [Go(z)]-' we should use the following expression: 

[Go(z)]-' = -iz/y + r + (3A/2)@(t= 0) - ( l /T)m(f  = 0). 

The equations (34) and (37) require knowing the correlation function at f = -m, 

p = @ ( t =  -m). 
. 

This value should be considered as a true thermodynamic order parameter. The 6rst 
and simplest approach is to reproduce this order parameter from the dynamic equation 
(34). If we define the longtime limit of the correlation function, 

'q = @(t+ + m) (41) 

we could expect that the following relation holds similarly to the conventional phase 
transition of second order: 

P = 4. (42) 

In accordance with (41) in the z representation the correlation function has a pole 
singularity at z = 0 

@(z + 0) = i q/z. 

Extracting similar singularities from (37) and using (42), we can find the following 
equation for q: 

K = @ ( t  = 0) 

T/(K - 4) = 0, r)  + m(q)/T 

m(q) = /L*q + %l*q3. (44) 
In accordance with (39) and (40), K = K(T)  obeys the equation 

(45) 

with 
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d(K,  r)  = [G;o(z = O)]-' = Gi'(z = 0) + 41K - m(K)/T. 

The response function in this case is 

and the critical temperature of glass transition is given by the equation 

A solution of equation (47) exists only above some critical value p determined by b 
and 1. 

The equations (43)-(47) present the initial solution of Sherrington and Kirkpatrick 
for the thermodynamic order parameter in the glassy state. As shown by a number of 
authors (De Almeida and Thouless 1978, Hertz 1983), this solution appears to be 
unstable. Indeed, let us present the correlation function in the form 

In the long-time limit we can linearize the equation for O(r) over cp(1). The requirement 
that q(t) decays with time leads to the following inequality: 

The above solution does not satisfy this condition, at least near the critical point for m(q) 
from (44). 

This analysis means that the thermodynamics of a glassy state cannot be reproduced 
within this dynamic approach. In fact, in the equations (34)-(36) we have established 
the thermodynamic limit by setting N = m, so that the relaxation times between the 
ergodiccomponentsequalinlinity. Asaresult, wecannot in thiscasereach the truelimit 
I = -to obtain the statistical mechanics quantity. 

We use physical arguments to determine the parameterp = Q(t = - a) in equation 
(34). Intheabsenceofsymmetry-breakingexternal fields, one expectsthat the parameter 
p is zero, owing to the averaging of variable x, (see (9)) over the infinite interval of time 
(Sompolisky and Zippelius 1982, Hertz 1983). The dynamic parameter q,  however, 
may be non-zero because its time of averaging is always shorter than the inter-valley 
transition times. With these assumptions p = 0 and q # 0, extracting again the 1/z 
singularities from (37) and (38), we can immediately amve at the following equation for 
the non-ergodicity parameter q: 

where K = K(T) is now given by the equation 

GR,A(O) = (K - q)/T (46) 

?;t = [PK(TC)I*. (47) 

W) = q + do. (48) 

G$(+O) dm(q)/dq S 1. (49) 

T% = K(K - q)m(q) 

d ( K ,  r)  = T/(K - q)  - m(q)/T = T/K.  

GA(0) = K/T .  (52) 

(50) 

(51) 
In this case, the system can be characterized by the two susceptibilities. One of them 

is the true staticsusceptibility, equal to 

Since the parameter K satisfying (51) does not show singular behaviour at the critical 
point, the static susceptibility is a continuous function of temperature near the glass 
transition. The other static susceptibility given by the limit GR(w + 0) can be found to 
be 

GR(+O) = ( K  - q) /T .  (53) 
It exhibits a cusp near the critical point (Hertz 1983). 
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The solution of (50) and (51) is already dynamically stable. Equation (50) represents 
the result of the mode-coupling theory (Gotze 1991). The choice m(q) in the form (44) 
corresponds to the known F13 model (Gotze and Sjogren 1984). 

4. Relaxation in non-equilibrium glass 

The fluctuation-dissipation theorem used in the previous section is a consequence of the 
equilibrium distribution function. Since the inter-valley transition times are infinite, the 
non-equilibrium distribution, once created, remains infinitely long. To demonstrate 
thii, let us take the following relation between the correlation function and the response 
function: 

Obviously, a similar solution is impossible for the high-temperature phase, except 
R(w) = 1. In the glassy state the present dynamic equations allow the solution with the 
constraint (54) for any monotonic slowly varying function of frequency R(w).  The slow 
frequency variation of R(w) should be understood as the following asymptotic Limit: 

where CY+ 0 and 5 is the microscopic relaxation time. The variable v varies over the 
interval 0 < q < m. The functionflq) is assumed to be monotonically increasing from 
f(0) = 1 to f(m) = m, so that the low-energy states appear to be overfilled. Note that 
these limitations of flq) do not allow inclusion in the present consideration of the 
equilibrium situation as alimit withf(q) = 1. Therefore, in spite of the limit cu- 0 the 
constraint (54) with (55) indeed corresponds to the non-equilibrium case. 

This deviation from equipartition generates the long-time relaxation. Following sz, 
the Green functions can be represented in the form 

i@(w) = ( T / ~ ) R ( ~ ) [ G A ( ~ )  - GR(~) ] .  (54) 

R(o) =f(d q = -culn(wa) (55) 

@(t)  = 'w) + dE) (56) 
GR(O = G R ( ~  - (@/r)(d/dE)A(E) (57) 
5 = cuin(t/t) (58) 

-(d/dO@(O = rf((Q[GR(t) - GA(~)]. (59) 

(d/dE)dE) = f(E) (d/dE)A(E). (60) 

GR1(@) = [ G ~ ( o ) ] - ~  -&(CO) (61) 
@(U) [GR(O)G~(O)]-* = @ ~ ( o )  [G&(w)G%(w)1-' + m(w). (62) 

In the leading order a+ 0 the following relations for the Fourier transforms are valid: 

m(w) = (d/dw)m(dv)) (63) 
( d / d ~ ) x ~ ( w )  = [dm(q)/dql (d/dq)A(tl) (64) 

where GR(t) and &(t) are the fast time-dependent parts. In the time representation the 
constraint (54) reads 

Taking into account the weak dependence offlE), we can rewrite (59) in the form 

Thesimplest way to derive the equation for q(E) is to use the o representation, where 
the Dyson equations read 

which are a consequence of the identity 

and the polynomial form of m(@) (see (31) and (32)). The condition q(m) = 0 is also 
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used in the derivation (63)-(65); it follows from the fact thatf(m) = m. As a result, from 
(61) and (62), for q(q) we obtain the Parisi-Sompolinsky-Zippelius equations: 

Note that the explicit slowly varying dependence originates from f(5). Therefore 
equations (60)-(67) can be rewritten in terms of the variablefonly. 

From the equations (66) and (60) it follows that for any functionflq) (see (55)) the 
parameter q(E) relaxes to zero from q(E = 0) = qo given by the equation 

= ( K  -q~)~(d/dqo)m(qo). (68) 
The parameter K ( T )  is related to the value q,, by the previous equation 

d(K, T )  + m(qo)/T= T/(K - Qo) .  

In the process of this slow relaxation the parameter A(q) determining the response of 
the system in the limit w -f 0 (see (67)) decreases from the value A(q = 0) = go to 

A(q = m) = K - T / p  = ~ ( 1  - T/T,) 

GR,A(w = 0) = K/T,. 

(69) 

(70) 

so that the susceptibility increases with decreasing w ,  reaching the value 

The fast relaxation is determined by the marginal solution qo (see (68) and (49)) and 
does not depend on the form of f(q). 

The non-equilibrium situation can be realized by slowly cooling a system starting 
from the high-temperature phase (Homer 1987). We can consider this case by again 
introducing the slow and fast components of the Green functions. Because of the 
breakdown of the time homogeneity, they now depend on two times: 

W l , ~ 2 ) = W , h )  +q , ( t13 f2 )  (71) 

G ~ . ~ ( f i , f 2 )  = dR,.4(fl?fZ) +gR.A( f l , tZ) ,  (72) 
Here the slow time dependence is generated by the time dependence of temperature. 
We shall suggest that the fast components relax to zero at any given moment of time by 
obeying the fluctuation-dissipation theorem. We can separate the mass operator into 
slow and fast parts as follows: 

m = m + o  0 = m(v)  (73) 
&.A = %.A + sR,A SR.A = gR.An(q)  n ( q )  = 60/6q. (74) 

After substituting (71)-(74) into (22) and (23), we can find the following equation for 
the slow components: 

P ( ~ I ,  b) = GU)G(2)4i,  h )  + G(1) 

dt3 b R ( f 1  I t3)'?(137 h) + 4 f l  I f 3 k A ( l 3 r  t2 )1  (75) 

g R ( t l ,  - G(1)G(2)n(tl, fdl = [G-'(I) + G T W 1  

I d f 3  gR(f1 ,  f3)&'~(f3, tz)[n(fi, l 3 )  f n(f),f i) l  (76) 



Ti J 

+ dT3 WI, 7 ' 3 ) V 3 ,  Tz) + 0 ' 1 ,  T M T 3 ,  TdI. (82) 
TC 

The solution of these equationscan be found near the critical point by an expansion over 
the small parameter r = (T, - T)/T, (Ioffe 1988, Freixa-Pascual and Horner 1990). 

5. Conclusions 

The appearance of infinitely high bamers separating the different phases forces the 
system to stay forever in the phase in which it was originally prepared. In other words, 
if we create the non-equilibrium population of these phases, this state lasts infinitely. As 
we have seen, the degeneracy of the order parameter revealed by sz reflects the variety 
of similar non-equilibrium states below the glass transition. From this point of view the 
breakdown of the fluctuation-dissipation theorem for the sz dynamicsolution is natural. 
The infinitely small parameter CY that occurs in their approach is related to this deviation 
from equipartition. The other characteristic feature of this deviation is its logarithmic 
dependence on energy. As a result, there is the slow logarithmic relaxation of the order 
parameter to zero. It should be emphasized that this relaxation is not a result of the 
inter-valley transitions. The shape of its decay is not universal, since it is determined by 
the non-equilibrium distribution function. 

In equilibrium we have found that the dynamics obeys the mode-coupling equations. 
The derivation of these equations was based on the fact that in the absence of external 
fields the correlation function relaxes to zero over the timescales determined by the size 
of the system due to the inter-valley transitions, so that we always have Q(f = - m) = 0. 
The non-ergodicity order parameter occurring in the glassy state represents an inter- 
mediate asymptote of the correlation function in the whole relaxation process before 



796 V N Prigodin 

Flgure 2. The diagram describing the first correction 
over the anharmonicity cunstant to the mode-coup 
ling approximation. 

inter-valley transitions happen. For the infinite system this asymptote realizes as the 
limit q = @(t+ + a). Therefore the non-ergodicity parameter cannot be reproduced in 
a thermodynamic framework. 

The analysis of the dynamic equation describing the ‘fast’ relaxation of the correlation 
function or the intra-valley transitions has been done in a number of works (see e.g. 
Gotze 1991). Depending on the model parameters, this relaxation can include 
exponential, power and also slow logarithmic decay (Gotze and Sjogren 1989). The 
latter has universal character. It should be noted that the fast dynamics for the non- 
equilibrium case obeys the same equations. Therefore the previous modecoupling 
analysis can be straightforwardly extended to this case also. 
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Appendix 

The first diagram for the mass operator including the renormalization of vertex is shown 
in figure 2. With (7) and (16), its evaluation in the classical equilibrium case gives 

The function (d/dt,)@(r,) decays over large f I  faster, at least, than 
large t, the contribution (Al) can be approximately represented in the form 

Therefore, for 

m(’)(t) = ( I S / T ) A ’ ( K ~  - qZ)@’(t) 

where K = @(t = 0) and q = @(r+ m). As a result, taking into account d 3 ) ( r )  yields 
only a renormalization factor before the term @’(f) in the whole expression for m(t). 

The previous consideration fails if p = 0. In this case @(I) is an oscillating function 
of time, the integral in (Al) diverges and we are faced with the known problem for an 
anharmonic oscillator. 
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